

Contents lists available at ScienceDirect

Journal of Molecular Catalysis A: Chemical

journal homepage: www.elsevier.com/locate/molcata

Deactivation of Au/TiO_2 catalyst in the hydrogenation of o-chloronitrobenzene in the presence of \mbox{CO}_2

Yufen Hao^{a,b}, Ruixia Liu^{a,b}, Xiangchun Meng^a, Haiyang Cheng^{a,b}, Fengyu Zhao^{a,*}

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China ^b Graduate School of Chinese Academy of Sciences, Beijing 100049, PR China

ARTICLE INFO

Article history: Received 11 April 2010 Received in revised form 23 October 2010 Accepted 26 November 2010 Available online 10 December 2010

Keywords: Au/TiO₂ Deactivation o-Chloronitrobenzene Hydrogenation CO₂

ABSTRACT

The hydrogenation of *o*-chloronitrobenzene over Au/TiO₂ was investigated in supercritical carbon dioxide (scCO₂), ethanol, H₂O, and H₂O/CO₂ at 140 °C. The reaction rate followed the order of H₂O>H₂O/CO₂ > ethanol > scCO₂. Au/TiO₂ was deactivated in the systems containing CO₂. Changes of Au/TiO₂ catalysts were investigated by means of transmission electron microscopy (TEM), *in situ* infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and diffuse reflectance ultraviolet-visible spectra (DR-UV/Vis). Aggregation of Au particles was excluded from origins of deactivation by TEM. Carbonate-like species formed on gold in the presence of CO₂ and H₂ were detected by *in situ* IR spectroscopy. The results of XPS and DR-UV/Vis reveal that the active species of Au⁰ was oxidized in the presence of CO₂. The possible formation of CO and its influence on the activity of Au/TiO₂ were also discussed. Accordingly, the formation of carbonates, the oxidation of Surface Au⁰ by CO₂, and the CO formation are proposed to be the possible factors for the deactivation of Au/TiO₂.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Catalysis by gold is attracting increasing interest in the preceding few years because gold, when highly dispersed on various supports, is catalytically active for a number of reactions, including CO oxidation [1]; alcohol oxidation [2]; olefin epoxidation [3]: selective hydrogenation of unsaturated hydrocarbons, etc. Recently, Corma et al. reported that the supported gold catalysts were highly chemoselective for hydrogenation of aromatic nitrocompounds due to the cooperation between gold nanoparticles and support which lead to preferentially activation of the nitro group [4]. To dissolve the substrate, organic solvents such as methanol, ethanol, cyclohexane, ethyl acetate and toluene are often used in both the liquid and conventional gas phase hydrogenation [4–7]. But these organic solvent are volatile, toxic and associate with serious health hazards and environmental problems. To avoid the drawbacks of organic solvents, supercritical carbon dioxide (scCO₂) was proposed to be a green alternative for its environmental benign nature such as non-flammability, relative inertness, complete miscibility with gas and easy separation from liquid/solid products after reaction [8-11].

Besides those environmental considerations, the use of solvent also has large effects on the reaction rate and selectivity. Keane et al. studied the gas-phase hydrogenation of *p*-chloronitrobenzene (*p*-CNB) over Au/Al₂O₃ in ethanol, propanol, butanol, and pentanol, and obtained the activity in the order of ethanol > propanol > butanol > pentanol. They attribute the lower hydrogenation rate in pentanol to a more facile polarization of pentanol relative to ethanol that results in a stronger interaction with the catalyst and inhibits *p*-CNB hydrogenation to a greater degree [12]. We have investigated the hydrogenation of nitrocompounds in scCO₂ over Pd/C, Pt/C, Ni/Al₂O₃ and Ni/TiO₂, and found the selectivity to anilines in scCO₂ is higher than that in ethanol [13–16]. The interaction of compressed CO₂ with reacting species (i.e., nitrobenzene, nitrosobenzene, and *N*-phenylhydroxylamine) is one of the important factors for this improved selectivity. The reactivity of nitro group is decreased but that of nitroso group is increased and the transformation of *N*-phenylhydroxylamine to aniline is promoted [13,14].

The combination of supported gold catalyst and scCO₂ seems to be worthy of studying, but up to now there are limited reports about it. For the selective oxidation reactions, Wang et al. [17] and Baiker et al. [18] found scCO₂ was superior to other organic solvents when supported gold catalysts was used to catalyze the alcohols oxidation. For the hydrogenation reactions, Chaterjee et al. *in situ* inlayed the gold nanoparticles into the pores of MCM-48 in scCO₂ and found special selectivity in the crotonaldehyde hydrogenation [19]; and the physically and chemically mixed TiO₂-supported Pd and Au catalysts presented dramatically improved reaction rate for the hydrogenation of citral in scCO₂ in our previous work [20]. In addition, a direct interaction between gold particles and CO₂ was suggested by the results that the optical absorption spectrum of

^{*} Corresponding author. Tel.: +86 431 8526 2410; fax: +86 431 8526 2410. *E-mail address*: zhaofy@ciac.jl.cn (F. Zhao).

^{1381-1169/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2010.11.029

small gold particles in $scCO_2$ significantly changed with CO_2 pressure in the literature [21]. Therefore, it is significant to discuss the catalytic performance of Au catalyst in the presence of CO_2 , it was expected to obtain some unexpected results by the variation of CO_2 pressure.

The present work was undertaken to study the hydrogenation of *o*-CNB over Au/TiO₂ in scCO₂ or H₂O/CO₂. The Au catalyst deactivated in the presence of CO₂. Possible factors which may induce the deactivation were discussed in detail by using the transmission electron microscopy (TEM), *in situ* infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and diffuse reflectance ultraviolet–visible spectra (DR-UV/Vis).

2. Experimental

2.1. Catalyst preparation

The anatase TiO₂-supported (Nanjing Haitai Nano material Co.) gold catalysts with different particle sizes were prepared by deposition-precipitation as described in the literature [22]. The required amount of an aqueous solution of $HAuCl_4$ (0.0025 mol l^{-1} , Sinopharm Chemical Reagent Co. Ltd.) was added into beaker, and NaOH solution $(5 \text{ mol } l^{-1})$ was added dropwise to HAuCl₄ under vigorous stirring. After the desired pH value was reached, the required amount of anatase was added to this solution with keeping vigorous stirring and the resulted suspension was aged at room temperature for 2 h while stirring. A solution of NaBH₄, prepared in ice water, was added to the suspension, the color of the mixture turned to dark purple from yellow, indicating the reduction of auric ion. After aging for 8 h, the formed solid samples were washed with deionized water and ethanol, and separated by centrifugation at 10,000 rpm. The supernatant was detected with AgNO₃ solution to ensure there was no residual Cl⁻ on the catalyst. Then the solid material was dried in vacuum at 60 °C overnight. The gold particle sizes were adjusted by controlling the pH value of HAuCl₄ with NaOH. The higher was the pH value, less fraction of gold deposited on the support, thus smaller the Au particles would be. In this process the pH value of HAuCl₄ was controlled with NaOH at 10 and 6.2 and the Au particle size was dispersed at 2-5 nm (denoted as Au/TiO₂ (I)) and 8-12 nm (denoted as Au/TiO₂ (II)), respectively.

2.2. Hydrogenation of o-chloronitrobenzene

The hydrogenation of o-CNB was carried out in a 50 ml highpressure stainless steel batch reactor. A certain amount of Au/TiO₂, deionized water and o-CNB were loaded in the reactor. After that the reactor was sealed, flushed three times with N₂ to remove the air, and heated to 140 °C for 15 min. Hydrogen (4 MPa) and then liquid CO₂ was introduced into the reactor to the desired pressure. The reaction mixture was stirred continuously with a magnetic stirrer during reaction. The stirring speed was 900 rpm to make sure the reaction was free from any significant mass transport limitations. After reaction the reactor was cooled in ice-water bath, depressurized carefully, and the liquid product was extracted with 10 ml diethyl ether. The reaction mixture was analyzed with a gas chromatograph (GC, Shimadzu GC-2010, FID, Rtx-5 capillary column, 30 m \times 0.25 mm \times 0.25 μm), and was identified by gas chromatography/mass spectrometry (GC/121 MS, Agilent 5890). Hydrogenation reactions in ethanol, water, and H₂O/CO₂ were conducted in the same reactor using similar procedures. The extent of error for the conversion was in the range of $\pm 2\%$.

The phase behavior was examined by the naked eye through the transparent sapphire windows attached to an 85 cm³ high-pressure reactor [13].

2.3. Catalyst characterization

The particle sizes of Au on Au/TiO₂ catalysts were examined by transmission electron microscopy (TEM, JEOL JEM-2000 EX). The TEM samples were prepared by dispersing the catalyst powder in ethanol under ultrasonic and then allowing a drop of the suspension to evaporate on copper grids covered with holey carbon film. An area containing about 50 particles was selected from the TEM pictures to calculate the Au particle size distribution.

Diffuse reflectance UV/Vis spectra were recorded with a Shimadzu UV-3100 PC spectrophotometer. X-ray photoelectron spectroscopy (XPS, VG Microtech 3000 Multilab) was used to examine the electronic properties of Au on the surface of the Au/TiO₂ catalysts. The C 1s peak at 284.6 eV arising from adventitious carbon was used as reference. This reference gives binding energy values with a precision of ± 0.2 eV. The surface composition of the samples was determined from the peak areas of the corresponding lines using a Shirley type background and empirical cross section factors for XPS. The freshly prepared catalysts were characterized directly. The used catalysts, prior to characterization, were washed thoroughly with diethyl ether 6 times, separated by centrifugation at 10,000 rmp, and dried in vacuum at 60 °C overnight.

The metal loadings were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES; Thermo Scientific ICAP6000, USA) after the extraction of metal species from the support by aqua regia. To detect the carbonate-like species on gold, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was carried out on a JASCO FT/IR-620 spectrometer equipped with a MCT detector. Prior to the measurement, the sample was heated to 50 °C for 0.5 h under a gas flow of 90% He and 10% H₂ to get rid of the oxide on the gold surface. The temperature was raised to 140 °C and the chamber was purged with high purity helium for 5 min. A background spectrum was collected. Then, a flow of 90% H₂ + 10% CO₂ was introduced into the chamber and the spectra were collected in 5, 15, and 30 min, respectively.

3. Results and discussion

3.1. Catalytic performances of Au/TiO₂ in different reaction media

The catalytic performances of Au/TiO₂ were evaluated for the hydrogenation of o-CNB in several media such as scCO₂, ethanol and water. As hydrogen is completely miscible with scCO₂ and this is beneficial to the hydrogenation reactions, the hydrogenation of o-CNB over Au/TiO₂ was performed in scCO₂ and compared with that in ethanol. The conversion of o-CNB in scCO₂ was about half of that in ethanol (entries 1 and 2 in Table 1), which is different from our previous results obtained with Ni/TiO2 catalyst. Over Ni/TiO₂, the conversion of o-CNB in scCO₂ is much higher than that in ethanol at 35 °C [14]. Moreover, the conversion of o-CNB in H₂O was about 3 times larger than that in ethanol. It was reported that the hydrogenation rate of *p*-nitrophenol in water-ethanol and water-dioxane increased with water content and became the highest in pure water [23]. The promoting effect of H₂O on the hydrogenation of nitroaromatics was also reported over supported Pt, Ni, Ag, and Cu catalysts [24,25]. o-CNB is soluble in ethanol and sparingly soluble in water (0.44 g l^{-1} at 20 °C [26]). The promoting effect of H₂O might be partially attributed to the H-bond interaction of interfacial H₂O molecules with hydrophobic reactant or transition state intermediates [27]. When CO₂ was introduced into the H₂O system, the conversion decreased with the increase of CO₂ pressure (entries 3–5 in Table 1). It seems that CO₂ molecule plays a negative effect on the catalytic activity of Au/TiO₂ in the present hydrogenation.

Hydrogenation of o-crab over Au Ho2 in american reaction media.						
Entry	Medium	Conversion (%)	Selectivity (%)		No. of phases	
			o-CAN	Others		
1	scCO ₂ (12 MPa)	14.3	98.7	1.3	1	
2	Ethanol (5 ml)	27.8	96.6	3.4	1	
3	$H_2O(5 ml)$	83.7	92.7	7.4	2	
4	H ₂ O (5 ml) + 6 MPa CO ₂	76.9	94.1	5.9	2	
5	H ₂ O (5 ml) + 8.3 MPa CO ₂	71.1	88.7	11.3	2	

 Table 1

 Hydrogenation of o-CNB over Au/TiO2 in different reaction media

Reaction conditions: o-CNB 0.2 g, Au/TiO_2 (I) 0.02 g, H_2 4.0 MPa, 140 $^\circ\text{C},$ reaction time 1 h.

The selectivity to *o*-CAN in scCO₂ was better than those in other systems containing liquid H_2O and ethanol. The main byproducts were *o*-chloronitrisobenzene, *N*-chlorophenylhydroxylamine and aniline. The higher selectivity in scCO₂ might be related with the lower concentration of reacting species in the CO₂ gas phase than that in the liquid phase. A nearly 100% selectivity to CAN has been achieved over Au/TiO₂ in the gas phase hydrogenation of CNB at 180 °C [12].

3.2. Influence of CO₂ pressure and reaction time

To further study the effect of CO₂ on the catalytic feature of Au/TiO₂ in o-CNB hydrogenation, Au/TiO₂ catalysts with different particle sizes were investigated in scCO₂ and H₂O/CO₂. In scCO₂ (Fig. 1), the conversion of o-CNB and the selectivity to o-CAN did not change with CO₂ pressure. This trend is totally different to our previous results that the conversion of o-CNB increases with CO₂ pressure and reaches the maximum at 10 MPa when Pt/C was used as catalyst [16]. In H₂O/CO₂ (Fig. 2), the o-CNB conversion decreased with increasing CO_2 pressure. In both scCO₂ and H₂O/CO₂ reaction media, Au/TiO₂ catalysts with smaller gold particles were more active than that with the larger ones. Claus et al. reported that the TOF value increased with decreasing of particle size when supported gold catalysts were used for the selective hydrogenation of acrolein [28]. Keane et al. also reported that the hydrogenation of *m*-dinitrobenzene over supported Au/TiO₂ exhibited a particle size sensitivity where higher specific rates were obtained with smaller Au particles; the catalysts bearing the smaller Au particles $(d_p = 3.4 \text{ nm})$ delivered an order of magnitude higher specific rate when compared with larger ones $(d_p = 6.1 \text{ nm})$ [29].

The influence of reaction time was also investigated in present work (Fig. 3). For both Au/TiO_2 (I) and Au/TiO_2 (II), the selectiv-

Fig. 1. Hydrogenation of *o*-CNB over Au/TiO₂ with different particle sizes in scCO₂. Reaction conditions: *o*-CNB 1.5 g, Au/TiO₂ 0.15 g, H₂ 4 MPa, 140 °C, 1 h. Au/TiO₂ (I), the Au particle sizes are in the range of 2–5 nm; Au/TiO₂ (II), the Au particle sizes are in the range of 8–12 nm.

Fig. 2. Hydrogenation of o-CNB over Au/TiO₂ with different particle sizes in H_2O/CO_2 . Reaction conditions: o-CNB 0.2 g, Au/TiO₂ 0.02 g, H_2O 5 ml, H_2 4 MPa, 140 °C, 1 h.

ity to *o*-CAN remained at nearly 100% through the whole reaction process, but the *o*-CNB conversion increased with reaction time in the first 8 h and did not change anymore. This indicates that the Au/TiO₂ catalysts deactivated during the reaction.

3.3. Possible factors resulting in the deactivation of Au/TiO₂

Since deactivation of supported catalysts usually relates with agglomeration of metal particles, the change of the particle sizes before and after reaction in $scCO_2$ at 140 °C was examined with XRD and TEM. But no diffraction peaks corresponding to Au were found, which is mainly due to the highly dispersity of gold particles and the low loading of gold. TEM results (Fig. 4) demonstrate that there was no significant agglomeration of gold particles after reaction. It was reported that the calcination of Au/TiO₂ catalysts at 200 °C could

Fig. 3. Effect of reaction time in scCO_2. Reaction conditions: <code>o-CNB 1.5 g, Au/TiO_2 0.04 g, H_2 4 MPa, CO_2 12 MPa, 140 $^\circ$ C.</code>

Fig. 4. TEM images of the fresh (a) and used (b) Au/TiO₂ catalysts in scCO₂.

not lead to the agglomeration of the Au particles [22]. Therefore, the agglomeration of Au particles was not the main factor causing the deactivation of catalysts.

Because carbonate formation is one of common factors that cause the deactivation of supported metal catalysts in the presence of CO or CO₂ [30,31], DRIFTS experiment was made to detect whether carbonate-like species were formed on Au/TiO₂ under the gas flow of CO₂ and H₂. Fig. 5 shows the IR difference spectra of Au/TiO₂ in the 1000–1800 cm⁻¹ region with increasing time on stream. Carbonate-like species on gold are characterized by IR bands at 1277, 1315, 1343, 1534, 1566, and 1606 cm⁻¹ [31]. Thus, among the bands at 1270–1655 cm⁻¹ in Fig. 5, the peaks at 1270, 1353, 1534 and 1610 cm⁻¹ might be attributed to carbonate-like

Fig. 5. IR difference spectra in the $1000-1800 \text{ cm}^{-1}$ region recorded during $10\% \text{ CO}_2/90\% \text{ H}_2$ treatment of Au/TiO₂ at $140 \degree \text{C}$ with increasing time on stream (min): (a) 5; (b) 15; (c) 30.

species on gold. The intensity of the bands did not change with increasing contact time with CO_2 and H_2 . Hence, carbonate-like species are formed on gold during the hydrogenation in the presence of CO_2 and this might be one of reasons that causing the deactivation of Au/TiO₂ in scCO₂.

To further investigate the factors causing the deactivation of Au/TiO₂ catalyst, XPS was used to investigate the electronic state of gold on the surface of the fresh and used catalysts. The C 1s peak of contaminant carbon at 284.6 eV was used as a reference. Analysis of Cl 2p region shows that the amount of Cl on the activated catalyst is negligible. As shown in Fig. 6, the peaks with binding energy of Au $4f_{7/2}$ at 83.0 eV and Au $4f_{5/2}$ at 86.7 eV are characteristic of Au⁰ [32], which indicates the complete reduction of gold catalyst on the fresh Au/TiO₂. It is worth to note that there is a shift of 1 eV to lower binding energy from standard values (84.0 and 87.7 eV) due to the strong metal-support interaction [32-34]. For the used Au/TiO₂ catalyst in scCO₂, new bands at 84.5 (Au $4f_{7/2}$) and 89.1 eV $(Au 4f_{5/2})$ were found, which indicates that oxidized Au species are present. The band at 84.5 eV (Au $4f_{7/2}$) was possibly assigned to Au $4f_{7/2}$ of Au^{δ^+}, and the one at 89.1 eV assigned to Au $4f_{5/2}$ of Au^{3^+} [30]. For the used catalyst in $H_2O/CO_2,$ Au^{3+} and $Au^{\delta+}$ were also detected together with metallic gold species (Fig. 6(iii)). For the used catalyst in H₂O (Fig. 6(iv)), only two peaks corresponding to Au⁰ were found, which is the same as the fresh catalyst. The results of UV/Vis measurement are shown in Fig. 7. The peak position of nanosized Au metal particles is between 500 and 600 nm; small clusters such as $(Au)_n^{\delta^+}$ exhibit a band around 390 nm [35,36]. Fig. 7 shows that the absorption spectrum of the used Au/TiO₂ in H₂O is similar to that of the fresh catalyst; however, for the used Au/TiO₂ catalysts in scCO₂ or in H₂O/CO₂, new absorption bands appeared around 430 nm, indicating the presence of oxidized Au species. The above results suggest that the original Au⁰ species was oxidized by CO₂ rather than by H₂O and reacting species. Mihaylov et al. reported the same phenomenon that the Au⁰ species was oxidized by CO₂ during the catalytic oxidation of CO at room temperature [37–39].

Fig. 6. Au 4f XPS spectra of Au/TiO₂ (I). Fresh (i), after reaction in scCO₂ (ii), in H_2O/CO_2 (iii), and in H_2O (iv). Reaction conditions: *o*-CNB 1.5 g, Au/TiO₂ 0.15 g, H_2 4 MPa, 140 °C, 1 h.

Metallic gold Au⁰ is the main active species for hydrogenation reactions. Therefore, the oxidation of Au⁰ in the presence of CO₂ should be another reason for the deactivation of catalyst. The oxidized gold species could not be reduced into metallic state in the present hydrogenation temperature of 140 °C. It is consistent with the following temperature programmed reduction results: oxidized gold should be reduced at >170 °C for the 1 wt% Au/TiO₂ [40].

Moreover, to get a further insight of the influence of CO_2 on the gold catalysts, Au/TiO₂ was pretreated under different conditions before reaction (Table 2). The conversion of *o*-CNB over the catalyst pretreated in scCO₂ was slightly lower than that over the fresh catalyst (entries 1 and 2), but higher than that over the Au/TiO₂ treated under CO₂ and H₂ (entries 2 and 3). This suggests that the presence of H₂ would accelerate the deactivation of the catalyst.

XPS results (Fig. 8) show that both the Au/TiO₂ catalysts pretreated with scCO₂ or with scCO₂ and H₂ were partially oxidized. The ratio of Au^{δ^+} was larger for the catalyst treated with scCO₂ than

Fig. 7. Diffuse reflectance UV/Vis spectra of different Au/TiO₂ catalysts: fresh (i), after reaction in scCO₂ (ii), in H₂O/CO₂ (iii), and in H₂O (iv). Reaction conditions: o-CNB 1.5 g, Au/TiO₂ (I) 0.15 g, H₂ 4 MPa, 140 °C, 1 h.

Table 2

Results for the hydrogenation of o-CNB over $Au/TiO_2\ pretreated\ under\ different\ conditions.$

Entry	Conversion (%)	Selectivity (%)
1 ^a	8.2	98.5
2 ^b	6.1	99.0
3 ^c	2.9	94.8
4 ^d	1.5	96.5

Reaction conditions: o-CNB 1.5 g, Au/TiO_2 (II) 0.04 g, H_2 4 MPa, CO_2 12 MPa, 140 $^\circ\text{C}$, reaction time 1 h.

^a Fresh Au/TiO₂ (II) catalyst.

^b Au/TiO₂ (II) was treated in 12 MPa CO₂ at 140 °C for 8 h.

^c Au/TiO₂ (II) was treated in 12 MPa CO₂ and 4 MPa H₂ at 140 °C for 8 h.

^d Charged CO (0.1 MPa) into the reaction system.

that with $scCO_2$ and H_2 . This indicates that there might be other factors affecting the activity of Au/TiO₂.

As CO could be generated from CO₂ during the hydrogenation process, and may block the active sites [41], we have made attempts to detect CO adsorbed on gold by DRIFTS measurement, but CO was not found under a gas flow of 90% H₂ and 10% CO₂ at 140 °C. In another DRIFTS study, CO was first introduced into the chamber and the CO adsorbed on Au/TiO₂ was detected; however, the adsorbed CO was removed from the catalyst surface by He purge. This indicates that the adsorption of CO on Au/TiO₂ is weak and reversible. In addition, CO could not be detected by GC analysis of the reactor effluent gas mixture using a TCD detector, due to the relatively high concentration of CO₂ and less amount of CO formed. However, when a trace amount of CO (0.1 MPa) was introduced into the reaction system, the o-CNB conversion decreased significantly (entry 4 in Table 2), implying that CO produced from CO₂ and H₂ might be another possible factor for the deactivation of Au/TiO₂. ICP analysis was also made to investigate the possibility of Au leaching during the reaction. The ratio of the leached to the original amount was 0.59%, implying the Au leaching is negligible even though the H_2O/CO_2 reaction system presents somewhat acidity (pH = 3) [42].

Thus, besides the molecular interactions of CO₂ with reacting species as proposed in previous work [13,14], compressed CO₂ plays the following roles in the present work: (1) increasing the solubility of H₂ in the liquid phase (positive); (2) forming carbonate-like species over Au/TiO₂ (negative); (3) oxidizing the active species of Au⁰ (negative); and (4) acting as the source of CO (negative). The counterbalance of these positive and negative effects resulted in the constant conversion of *o*-CNB with increasing CO₂ pressure in scCO₂. For the reaction in H₂O/CO₂, besides the above factors, the amount of *o*-CNB in H₂O may decrease with

Fig. 8. Au 4f XPS spectra of Au/TiO₂ (II): (i) fresh, (ii) treated in 12 MPa CO₂ at 140 °C for 8 h, (iii) treated in 12 MPa CO₂ and 4 MPa H₂ at 140 °C for 8 h.

increasing CO₂ pressure. Hence, the conversion in H₂O/CO₂ linearly decreased.

4. Conclusion

The conversion of *o*-CNB during hydrogenation over Au/TiO₂ in scCO₂ changes little with CO₂ pressure. The Au/TiO₂ catalyst deactivates during the hydrogenation in scCO₂. Carbonate-like species are formed on gold and may cover some of active sites. The original Au⁰ species was partially oxidized by CO₂ even in the presence of H₂. It seems likely that CO might be formed in the hydrogenation process and poisons some active sites. The above three factors, formation of carbonate-like species, the oxidation of surface metallic Au, and the generation of CO might be responsible for the deactivation of Au/TiO₂ during the hydrogenation of *o*-CNB in scCO₂.

Acknowledgments

The authors gratefully acknowledge the financial support from the One Hundred Talent Program, NSFC 20873139 and KJCX2, YW. H16.

References

- [1] M. Haruta, Catal. Today 36 (1997) 153.
- [2] C.H. Christensen, B. Jorgensen, J. Rass-Hansen, K. Egeblad, R. Madsen, S.K. Klitgaard, S.M. Hansen, M.R. Hansen, H.C. Andersen, A. Riisager, Angew. Chem. Int. Ed. 45 (2006) 4648.
- [3] M.D. Hughes, Y.J. Xu, P. Jenkins, P. McMorn, P. Landon, D.I. Enache, A.F. Carley, G.A. Attard, G.J. Hutchings, F. King, E.H. Stitt, P. Johnston, K. Griffin, C.J. Kiely, Nature 437 (2005) 1132.
- [4] M. Boronat, P. Concepcion, A. Corma, S. Gonzalez, F. Illas, P. Serna, J. Am. Chem. Soc. 129 (2007) 16230.
- [5] A. Corma, P. Serna, Science 313 (2006) 332.
- [6] D.P. He, H. Shi, Y. Wu, B.Q. Xu, Green Chem. 9 (2007) 849.
- [7] B.J. Zuo, Y. Wang, Q.L. Wang, J.L. Zhang, N.Z. Wu, LD. Peng, L.L. Gui, X.D. Wang, R.M. Wang, D.P. Yu, J. Catal. 222 (2004) 493.
- [8] A. Baiker, Chem. Rev. 99 (1999) 453.
- [9] C.A. Eckert, B.L. Knutson, P.G. Debenedetti, Nature 383 (1996) 313.
- [10] J.R. Hyde, P. Licence, D. Carter, M. Poliakoff, Appl. Catal. A 222 (2001) 119.
- [11] W. Leitner, Acc. Chem. Res. 35 (2002) 746.
- [12] F. Cárdenas-Lizana, S. Gómez-Quero, M.A. Keane, ChemSusChem 1 (2008) 215.

- [13] X.C. Meng, H.Y. Cheng, Y. Akiyama, Y.F. Hao, W.B. Qiao, Y.C. Yu, F.Y. Zhao, S. Fujita, M. Arai, J. Catal. 264 (2009) 1.
- [14] X.C. Meng, H.Y. Cheng, S. Fujita, Y.F. Hao, Y.J. Shang, Y.C. Yu, S.X. Cai, F.Y. Zhao, M. Arai, J. Catal. 269 (2010) 131.
- [15] C.Y. Xi, H.Y. Cheng, J.M. Hao, S.X. Cai, F.Y. Zhao, J. Mol. Catal. A 282 (2008) 80.
- [16] F. Zhao, Y. Ikushima, M. Arai, J. Catal. 224 (2004) 479.
- [17] X.G. Wang, H. Kawanami, S.E. Dapurkar, N.S. Venkataramanan, M. Chatterjee, T. Yokoyama, Y. Ikushima, Appl. Catal. A 349 (2008) 86.
- [18] P. Haider, B. Kimmerle, F. Krumeich, W. Kleist, J.D. Grunwaldt, A. Baiker, Catal. Lett. 125 (2008) 169.
- [19] M. Chatterjee, Y. Ikushima, Y. Hakuta, H. Kawanami, Adv. Synth. Catal. 348 (2006) 1580.
- [20] R.X. Liu, Y.C. Yu, K. Yoshida, G.M. Li, H.X. Jiang, M.H. Zhang, F.Y. Zhao, S. Fujita, M. Arai, J. Catal. 269 (2010) 191.
- [21] M. Arai, Y. Nishiyama, Y. Ikushima, J. Supercrit. Fluids 13 (1998) 149.
- [22] A. Wolf, F. Schuth, Appl. Catal. A 226 (2002) 1.
- [23] S. Nishimura, Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, John Wiley and Sons, 2001, p. 336.
- [24] J. Ning, J. Xu, J. Liu, H. Miao, H. Ma, C. Chen, X. Li, L. Zhou, W. Yu, Catal. Commun. 8 (2007) 1763.
- [25] P. Maity, S. Basu, S. Bhaduri, G.K. Lahiria, Adv. Synth. Catal. 349 (2007) 1955.
- [26] M.H. Abraham, J. Le, J. Pharm. Sci. 88 (1999) 868.
- [27] Y.S. Jung, R.A. Marcus, J. Am. Chem. Soc. 129 (2007) 5492.
- [28] C. Mohr, H. Hofmeister, P. Claus, J. Catal. 213 (2003) 86.
- [29] F. Cardenas-Lizana, S. Gomez-Quero, H. Idriss, M.A. Keane, J. Catal. 268 (2009) 223.
- [30] H. Wang, H.Q. Zhu, Z.F. Qin, F.X. Liang, G.F. Wang, J.G. Wang, J. Catal. 264 (2009) 154.
- [31] Y. Hao, M. Mihaylov, E. Ivanova, K. Hadjiivanovic, H. Knozinger, B.C. Gates, J. Catal. 261 (2009) 137.
- [32] R. Radnik, C. Mohr, P. Claus, Phys. Chem. Chem. Phys. 5 (2003) 172.
- [33] S. Arrii, F. Morfin, A.J. Renouprez, J.L. Rousset, J. Am. Chem. Soc. 126 (2004) 1199
- [34] L. Ilieva, J.W. Sobczak, M. Manzoli, B.L. Su, D. Andreeva, Appl. Catal. A 291 (2005)
 85
- [35] A.C. Gluhoi, X. Tang, P. Marginean, B.E. Nieuwenhuys, Top. Catal. 39 (2006) 101.
- [36] J.L. Margitfalvi, A. Fasi, M. Hegedus, F. Lonyi, S. Gobolos, N. Bogdanchikova, Catal.
- Today 72 (2002) 157. [37] M. Mihaylov, E. Ivanova, Y. Hao, K. Hadjiivanov, B.C. Gates, H. Knozinger, Chem. Commun. (2008) 175.
- [38] M. Mihaylov, H. Knozinger, K. Hadjiivanov, B.C. Gates, Chem. Ing. Tech. 79 (2007) 795.
- [39] M. Mihaylov, E. Ivanova, Y. Hao, K. Hadjiivanov, H. Knozinger, B.C. Gates, J. Phys. Chem. C 112 (2008) 1897.
- [40] F. Cardenas-Lizana, S. Gomez-Quero, A. Hugon, L. Delannoy, C. Louis, M.A. Keane, J. Catal. 262 (2009) 235.
- [41] S. Ichikawa, M. Tada, Y. Iwasawea, T. Ikariya, Chem. Commun. (2005) 924.
- [42] C. Roosen, M. Ansorge-Schumacher, T. Mang, W. Leitner, L. Greiner, Green Chem. 9 (2007) 455.